Modelling transport-limited discharge capacity of lithium-sulfur cells
نویسندگان
چکیده
منابع مشابه
Capacity Fade Analysis of Sulfur Cathodes in Lithium–Sulfur Batteries
Rechargeable lithium-sulfur (Li-S) batteries are receiving ever-increasing attention due to their high theoretical energy density and inexpensive raw sulfur materials. However, their rapid capacity fade has been one of the key barriers for their further improvement. It is well accepted that the major degradation mechanisms of S-cathodes include low electrical conductivity of S and sulfides, pre...
متن کاملInitial Discharge Capacity of Manganese Cobaltite as Anode Material for Lithium Ion Batteries
Nanostructured manganese cobalt oxide spinel (MnCo2O4) are prepared by co-precipitation method and calcined at 650 and 750°C. Morphological studies show that by increasing the calcination temperature from 650 to 750°C, morphology of the particles changes from quasi-plate to polyhedral. The MnCo2O4 calcined at 650°C could deliver an initial discharge capacity of 1438 mAh g-1 under current densit...
متن کاملMesoporous carbon-carbon nanotube-sulfur composite microspheres for high-areal-capacity lithium-sulfur battery cathodes.
Lithium-sulfur (Li-S) batteries offer theoretical energy density much higher than that of lithium-ion batteries, but their development faces significant challenges. Mesoporous carbon-sulfur composite microspheres are successfully synthesized by combining emulsion polymerization and the evaporation-induced self-assembly (EISA) process. Such materials not only exhibit high sulfur-specific capacit...
متن کاملLithium polysulfidophosphates: a family of lithium-conducting sulfur-rich compounds for lithium-sulfur batteries.
Sulfur-rich lithium polysulfidophosphates (LPSPs) act as an enabler for long-lasting and efficient lithium-sulfur batteries. LPSPs have ionic conductivities of 3.0×10(-5) S cm(-1) at 25 °C, which is 8 orders of magnitude higher than that of Li2S. The high lithium ion conductivity imparts excellent cycling performance, and the batteries are configured in an all-solid state, which promises safe ...
متن کاملInterface Limited Lithium Transport in Solid-State Batteries.
Understanding the role of interfaces is important for improving the performance of all-solid-state lithium ion batteries. To study these interfaces, we present a novel approach for fabrication of electrochemically active nanobatteries using focused ion beams and their characterization by analytical electron microscopy. Morphological changes by scanning transmission electron microscopy imaging a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electrochimica Acta
سال: 2016
ISSN: 0013-4686
DOI: 10.1016/j.electacta.2016.10.032